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The entanglement has been explored as one of the key
resources required for quantum computation, the
functional dependence of the entanglement measures on
spin correlation functions has been established,
correspondence between evolution of MES of two-qubit
system and representation of SU(2) group has been
worked out in the new eigen basis (Rajput-Singh Eigen
basis)

%TRODUCTION

Eichard Feynman [1] examined the role quantum mdckaran play in the

development of future computer hardware and dematest that time evolution of an
arbitrary quantum state is intrinsically more pofuecomputationally than the evolution of
logical classical state. Since then, quantum comglias attracted wide attention and soon
became the hot topic of research. Quantum CompQ€y [2, 3, 4, 5] is quantum information
processing [6, 7, 8]. It is relatively new discidi and not yet completely understood.
However, it provides an excellent introduction tamp of key ideas. Measurement and
manipulation of entangled state of many particletesn becomes a far reaching consequence
of quantum information processing. The physicallpveed degree of entanglement [9] and
mixture is a timely issue given that the entangleided states could be advantageous for
certain quantum information situation. The simplesh-trivial multi-particle system that can
be investigated theoretically, as well as experi@bn consists of twdaQ-bits which display
many of the paradoxical features of quantum mecssarsuch as superposition and
entanglement. Basis of entanglement is the coioeldtl0] that can exist betweeR-bits.
From physical point of view, entanglement is slittle understood. What makes it too
powerful is the fact that since quantum statest@dssuperposition, these correlations exist in
superposition as well and when superposition isrogsd, the proper correlation is somehow
communicated between tiigbits. It is this communication that is the cruxesftanglement.
Entanglement is one of the key resources requivedjfiantum computation and hence the
experimental creation and measurement of entanglatbs is of crucial importance for
various physical implementations of quantum comput®uantum entanglement was already
PCM 0230196
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pointed out by Schrodinger to be a crucial eleneémuantum mechanics but the research has
been refocused on it in the last fifteen years bsedhe fields of quantum information theory,
guantum computers, universal quantum computing orétweleportation [11], dense coding
[12], geometric quantum computation [13] and quanteryptography [14] are being
developed rather quickly. By quantum entanglementwean quantum correlation among the
distinct subsystems of the entire composite syskamsuch correlated quantum systems, it is
not possible to specify the quantum state of arbsgstem independently of the remaining
subsystems.The generation of quantum entanglenmeon@ spatially separated particles
requires non-local interactions through which theamum correlations are dynamically
created but our present knowledge of quantum elgaremt is not at all satisfactory [9].
However, the functional dependence of the entanghémmeasures like concurrence [15,16],
i-concurrence [17] and 3-tangle [18] on spin- clatien functions [19] have been established.
Protection of quantum states of open system frocolterence is essential for robust quantum
information processing and quantum control in quantomputers.

In the present paper, entanglement has been esmsrene of the key resources required
for quantum computation, the functional dependerfcthe entanglement measures on spin
correlation functions has been established andcetpegsentation of SU(2) group has been
worked out in the new eigen basis (Rajput-Singkemribgasis) [20-25]. It has been shown that
the degree of entanglement for a two-qubit stapedds on the extent of fractionalization of
its density matrix and that the entanglement is metely a quantum phenomenon without
any classical analogue. A reliable measure of ghtament of two-qubit states has also been
expressed in terms of concurrence [15,16] and st teen shown that in a free two-qubit
system the states with both combinations of pdrsiims (.e. states with maximum Hamming
spread) are definitely maximally entangled statB#E$) while among the states with
minimum Hamming spread, those with both anti-patalombinations are MES and those
with one combination of parallel spins and othethvanti-parallel spins are not entangled at
all. Necessary and sufficient conditions for thenayal two-qubit state to be maximally
entangled state have been obtained and the camlifiw this state to be non-entanglee. (
separable) and to be partially entangled respdgtikiave been derived.

“7HEORETICAL BASIS OF QUANTUM COMPUTING

m! quantum level an electron can be in a superposidf many different energy states
which is not possible classically. Similarly, anlyyBical system is described by quantum state
W >=3,Clo; >
This is a linear superposition of basis sta#gs>. Such a state is a Coherent Statdis

superposition is destroyed on interaction of systeith its environmentj.e. it becomes
decoherent.C;|2gives the probability ofiy > collapsing in to stats); > as it decoheres.
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Electron-spin is a two state system with elemefits corresponding to spin-up and >
corresponding to spin- down. A state of this systeay be written as

lp >=al > +bl I>

As long as system maintains coherence, it cannaialieto be in either spin-up or spin-
down. When it decoheres, it can be in either of¢hstates. Such a simple two- state quantum
system is the basic unit of quantum computatiomn¢um-bit Q-bit) where we rename two
states as O-state, and 1-state. Smallest unit fofniration stored in a two-state quantum
computer is called &-bit. If there is a system oh Q-bits, it can represert™ states at the
same time.

Q-bit is simply a two-level system with generic stas:
|y>=a|0> +b|1>,

A two-dimensional complex vector, wheseand b are complex coefficients specifying
the probability amplitudes of corresponding statesh that

lal2+ |p]2=1
Q-bit individual is defined by a string of Q-bits.
[00>=100.......>

An operator on a Hilbert space describes how @enestate is changed in to other.

lo>=0|y>
For instance,
1 (2 2 1
Let |lp >=E(1)=\/—§|T> +E|l>

and an operator represented by matrix

U= %H _11]
Then we have
ow>=3l lEl] =l

=>¢>=%T>+ﬁll>

= Amplitude ofl T> has increased while that lof> has decreased.
Thus a quantum operator ig@ate and represented by a square matrix.

State of aQ-bit can be changed by the operation with a quargate which derives the
individuals towards better solution (eventually tods a single state). A quantum gate is a
reversible gate and can be represented as a unitnx U acting on &-bit basis stateQ-
gates operating on just two bits at a time arei@afft to construct a general quantum circuit
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(based on Lie-Group theory).Thus quantum operatay be made to work as NOT- gate;
controlled NOT gate (C-NOT); Rotation-gate; Hadmgate etc.

Quantum Computation (QC) can be defined as reptiegetine problem to be solved in
the language of quantum states and producing apsrttat derive the system to a final state
such that when system is observed there is highaghitity of finding a solution. QC consists
of state preparation; useful time evolution of quamsystem; and measurement of the system
to obtain information. Upon measurement system edgllapse to a single basis state. Object
of QC is to ensure that measured basis state lishigh probability.

ENTANGLEMENT

Easis of entanglement is the correlation that caisteketween Q-bits. These

correlations exist in superposition as well and mviseperposition is destroyed, the proper
correlation is somehow communicated betweerQHmts. It is this communication that is the
crux of entanglement.

Mathematically, it is described using density mafdrmulation; Density matrix of state
I > is given by:

The state for which density matrix cannot be faetmt is said to be entangled while those
with fully factorized density matrix are not entded) at all. For instance, let us consider a
two-qubit state as:

1
(17 >E[|OO > + 111 >]

It appears in matrix form as:

SO

hp>=+
1
where ‘1’ denotes the presence of the correspondiiggn state in the superposition and ‘0’
denotes its absence, i.e. ‘1’ @0 > andl11 >and ‘0’ for101 > and 110 >. This quantum
state is the superposition of only the sta@®s> andi11 > which have maximum Hamming
spread between two-qubits. For this state we Havel¢nsity matrix

100 1
1
py=lp><ypl==

= oo

0 0 O
0 0 O
0 0 1

This cannot be factorized at all and the skate- is maximally entangled (MES).
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Let us now consider the following quantum statesagerposition of qubitf00 > and
101 > which have minimum Hamming spread,

1 1
|£>_E|OO>+E|01>
1
11
or |£>—¢2 0
0
Its density matrix is:
1 1 0 0
_ _11 1 0 0o|]_z1[1 O 1
=le><e =210 0 0 o _2[0 0]®[1
0 0 0 O

which is completely factorized. This state is nutaegled at all.

Another quantum state as superposition of Q-bith weast Hamming spread may be
written as:

0
— 0
|E>—\/|01>+\/|11>\/ 1
1
with density matrix
0 0 0 O
_ _1/0 0 0 0|_1[0 0] [1 1
pe=le><ei=110 ¢ 1 1|=l el 1
0 01 1

which is fully factorized and hence this stateas entangled at all.

On the other hand the quantum state as superpositi@-bits|00 >,101 > andI11 >
may be written as

[}
|(>—\/ |00>+\/ |01>+\/ |11>—\/3 0
1
Its density matrix is:
1 1 0 1
pe=1¢><a=210 ¢ 0 o
11 0 1
This can be only partially factorized as
L 11 0 1
pe=3G D86 D*o 0 0 o0
1 0 0 0
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and hence the state is partially entangled. Thasd#gree of entanglement for a two Q-bits
state depends on the extent of fractionalizatioitsoflensity matrix and the entanglement is
completely quantum phenomena without classicalcayues.

It may readily be shown that the density matrix tloe following two Q-bit states (Bell
States) cannot be factorized at all;
lp, >= —v%(mo >—111>);
I, > = %( 100 > +111>);

i .
I3 >——5(|01>+|10 >);
1
9, >= E( 01> —110 >).
and hence all these states are maximally entarggigds (MES). The matrices of these
states satisfy the condition:
hi=1 Po, =1
or he oy ><¢,l=1
These states also satisfy the condition
< Pyl > =6,
These equations show that the Bell's states caistthe orthonormal complete set and

hence form the eigen-basis (magic basis) of theesjph two level Q-bits. These states are
maximally entangled states (MES).

For pure statel ¢ > any two-qubit state may be written in magic basis
I > = Fkoy bic oy >
with its concurrence defined as
lC(p >) = 15k, bE |

If the concurrenceC(ly >) = 1, the state is maximally entangled while &t ¢y >) =
0, the statéy > is not entangled at all.

For O<C(y>) <1,
the statel yp > is partially entangled.

The concurrence of a state is as reliable meadutegree of entanglement as the extent
of factorization of its density matrix while Hammirspread of a tw@-bits state is not that
reliable measure of the entanglement since thesstat> andl e > with minimum Hamming
spread and zero concurrence are not entangletl (@eatompletely separable) and the states
l@; > and | @, > with minimum Hamming spread but concurrence uniige maximally
entangled states (MES).
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In terms of Z-components of spins of two electrdhs, state$ @; > and| @, >of magic
bases with minimum Hamming spread, may be writeen a

(@ >=1T> 41T >andl @, >= IT> - IT>

This consists of Q-bits with anti-parallel spinsn @e other hand, the states> and
| €> with minimum Hamming spreads may be written as:

le>= ITT> +ITl>and le>=ITL> +1Ll>

This is with one combination of parallel spins astter of anti-parallel spins. In states
|@; > and | @, > both combinations are with parallel spins. Thudrée two-qubit system
the states with combinations of parallel spins 6tates with maximum Hamming separation)
are definitely MES while among the states with minim Hamming spread, those with anti-
parallel spins are MES and those with one comhinadif parallel spins and other with anti-
parallel spins are not entangled at all. Therefgegious qubits of two-qubit states may be
written as follows in magic basis;

i 1
100 > = 'TT>_E|®1>+TE @, >,

_ _ i L
01> =11>= = 16, >+ = 10, >,
= -t _ 1
10> =111> == 19, > — = 18, >,
11>= 1> = —%|@1>+% 19, >

%ECESSARY AND SUFFICIENT CONDITIONS FOR A TWO-QUBIT STATE TO

BE MES
general two-qubit state may be written as:

P> = \/i_y[aIOO > +bl01 > +cl10 > +dI11 >]

a
_1|b
=-|e

d

wherey = |a|? + |b|? + |c|? + |d|?

This state may be written as:

Wy > = L[i(a — )P, > +(a+d) 18, > +i(b + )IBs > +(b—c) 19, >]
V(2y)

and its concurrence becomes

C(lw >) =§|ad — be]
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26
Thus, for non-entangled staiee( separable state), we have:
ad = bc

and for partially entangled states,
2|ad — bc|
0<—<1

Y
For MES, we have:
2lad — be| = |al? + |b|% + |c|? + |d|?
[(@aFd)>+|(bxc)>=0

This can be true either for;
d=a"and c = —-b"

orfor; d = —a*and ¢ = b*
These are the necessary conditions for the stiéfe> of equation to be maximally

entangled. Thus, we get the following two sets &3
1
Y, >= —— [ al00 > +b101 > —b"110 > +a*l11 >]
V(2[lal? + |b?}
1 * *
and v, > = Tl [al00 > +bl01 > +b*110 > —a*l11 >]
Bell statesi(e. magic bases) may readily be obtained from the 8#at> on substituting:
(a=1,b=0)(a=—i,b=0);(a=0,b=1);and (a =0,b = —i)
For these sets of values wénd b, the statd ¥, >gives| @, > and | @, > with phase
rotated byg andl @, > and 1@, > with phase rotated byg.
Other maximally entangled two-qubit states whicimfahe orthonormal complete set
(i.e. eigen basis) may be obtained as follows lyigya = + 1 and b = 1 in statel ¥, > of

equation and = 1,b = 11 in statel ¥; >;
1
[-100 > +101 > +110 > +I11 >],

hp, > ==
¥ >=>
hp, >==[100 > —I01 > +I10 > +11>],

s >=§[|oo> 101> =110 > +I11 >], . (A)

1
Y, >= E[IOO > 4101 > +110 > —I11 >]

with their density matrices respectively given by:
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-1 -1 -1 —17
_al-1 1 1 1
Poi=3 -1 1 1 1
1 1 1 1!

1 -1 1 17

_il-1 1 -1 -1
Po=%31 1 =1 1 1]
-1 -1 1 1/

1 1 -1 1

_if1 1 -1 1
Pps =3l-1 -1 1 -1
-1 1 -1 1

Pa =311 1
-1 -1 -1 1
None of which can be factorized at all. The coneoce for each of these states is unity
and these states constitute the orthonormal se sin

<Py > =6 andyyo; I, ><y,l =1
Other six MES obtained front’; > and ¥, > by substituting ¢ = 1,b = +i) and
(a =i,b = £1) respectively, do not constitute complete et o not form eigen bases).

States given by equation (A) also constitute tlyeribasis (different from magic basis)
of the space of two- qubit system. This is the mégen basis, being introduced for the first
time, and to differentiate it from the already knmo®ell’s basis, let us call Bingh-Rajput
basis, for its possible use in future in the literatufbde MES constructed in the form given by

eqgns. (A) may be correspondingly call&thgh-Rajput states [20-25]. In terms of these
states, all the qubits of two-qubit system may biioed as

|00>=%[|¢2> Flps > + Py > — hpy >,
|o1>=%[|¢1> Flps > + py > — I, >,
|1o>=%[¢1> Flpy > + P, > — g >],

|11>=%[|¢1> P, > + s> — i, >]

Bell states may be constructed as follows in tlels basis;

s >=Tzl[“”‘* > =Wy T 19 > = [ > + s >];

by > = —=[lpy > + oy >T; by >=—

NG3 [ > = s >]
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Concurrence of each of Bell states in this basie & unity showing the invariance of
concurrence in different bases. Condition for pértentanglement shows that if any
coefficient of qubits in the state¥ > is vanishing, then the state is necessarily pértial

entangled and its concurrencez—iif the sum of squares of moduli of non-zero caéffits is
3. For instance, leb =0, and |a|? + |c|?> + |d|? = 3, then the concurrence becomzes
whena =+ 1, c =t 1andd = £ 1. It may be readily shown that all the sta%{;i 100 >

+101 > +111 >] are partially entangled with concurrerrceif.

7UNCTIONAL DEPENDENCE OF ENTANGLEMENT ON SPIN OPERATORS
OF QUBITS CONSTITUTING TWO-QUBIT STATES

he elements of density operatoof the state constituted by the qubltand B can be

expressed as follows in terms of spin matricesthadperatorg® = %(ax + ig?) associated

with these qubits;

1
pu =3 [1-<0f > =< 0§ > +<gfaf >| = [1 — T.(pof) — T.(po§) + Tr(pofog)]

1
P2z = 7 [1-< 0} > +< 05 > —<gfof >| = [1 = T.(paf) + T.(po§) — T,(pojog)]
1 z Z Z ~Z z Z Z ~Z
P33 = Z[1+< 0i > —<of > —<ojof >] =[1+T.(pof) — T.(po5) — T,(poioz)]
1 z Z ZZ Z Z Z~Z
Pas = Z[1+< 0i > +<o0f > +<ojof >]=[1+T.(pgf) + T.(po§) + T.(poioz)]

* 1 X X .y P Y x x .Y
P23 = P23 :Z[< g, 0 > +< O-A O-B > +l{< O-A Op > —< O-AO-B >}]

and all other elements vanishing. Thus the demséttrix of the concerned state is

pin O 0 0
0 P2z P23
0 p33 Psz O
0 0 0 pag

p= with its eigen values given by

a1 = P11, B2=P4a4,

1
A3=35 [(p2z + P33) + V{(paz + p33)? — 4(p22p33 — 1p231D}]

I[ <of >?2+<of >2-2<ofof > ]I

1

=3 1-<afof >+ + ,
l < ooy >2+< 00y > +< 0} 0f >2 +< gfo, >? J
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1
=7 [(022 + p33) — V{(p22 + P33)% — 4(P22033 — |p231}]

1
=Z|1—<0AZ(7§>— +

<of >?2+<0f >?-2<cfof > ]
I < gfor >2 +<g)a) >2 +<00F >2 +< gfo) >2 !
A 0B 4 0p A 9B A Op J

which give Z§=1 A =p11+ P tpsztpu=Tp=1
Fora, = a,, we have
<of>=-<o0f>
and then as > a.

For this choice of eigen values of density mattite necessary and sufficient condition
for the concerned state to be entangled is

az>a ta, +ay,
while the state is separable (not entangled aifall)
az =0, +a, +a,
Thus we get the following necessary and sufficemtditions for entanglement;
< of >< of >><cjof >
and[(1-< 6Z0Z >)? — (< 0gf > +< df >)?] <[(<ofof > +<a] oy >)?
+(< 0)af > —< afay >)?
In case the state exhibits spin- flip symmetry hage
<of>=0;<0f>=0and <o)o}>=<0dfoy >
Then conditions for entanglement reduce to
< ofof ><0
and (1-< gfof >) < (< afaf > +< a] o) >)
or (< ofof >+<0)o) > +<cfof>) >1

These are necessary and sufficient conditions tdngrement of a state in terms of
correlation of spin components of its constituembits. The first condition shows that if the
state of constituent qubits A and B with< ¢f > =< 0§ >=0, is entangled then the
z-components of the spins must be correlated argifeagnetically.

For maximal entanglement, the eigen values of itlemsatrix satisfy the following
condition

0(3—0(1—0(2—0(421

or (13—(14=1+(11+a’2
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which gives
(< ofof >+<0g)a) > +<agfof>) =2

Maximally entangled states satisfying this comuditimay find enormous applications to
guantum communication and quantum computation fgaes. Bell states which constitute
magic basis as well as the new MES which consttheéenew eigen basis for the space of two-
gubit system, satisfy these conditions.

eOKRESPONDENCE BETWEEN EVOLUTION OF MES OF TWO-QUBIT

SYSTEM AND REPRESENTATIONS OF SU(2) GROUP

eneral MES for a two-qubit system for whifk|? + |b|? =1; may also be written as

follows
1
¥Y; >= I(a,b) >,= ﬁ[aloo > +bl01 > —b*110 > +a*111 >]
and W, >= I(a,b) >_= %[moo > +bl01 > +b*110 > —a*l11 >]

I(a,b) >, = \/%[aIOO > +bl01 > Fb*110 > +a’l11 >]

= Z[al 11> +bI N> Fb'1 11> +a'l U>]
Let us substitute
a . . a . . a
a = cosz — ik, sinz ;b = —(ky + lkx)smi
where k = (ky, ky, k,) is unit vector an® < a < .

MES may then be written as

- a a
Wk a)>.= [cosiooo > 4111 >) — ikzsinz (100 > £111>)

a a
—kysin5(|01 > F110 >) — ikxsin§(|01 > 1110 >)]
or in new eigen basis

ik, 1 a
W(k,a) >,= \/Esm It,b1 > +ﬁ(cos2 ik, smz + kysin )Ilpz

+ 1( 5 thysin — kysin)| s gin 2
7 cos > ik,sin— > sin—)hp; > \/_sm P, >
iky

andiyp(k,a) >_= \/_( cos Z4ik, sm kysin%) W, >+ Zsing |1[12
ik,
2

|>+1(a'k'ak 3)!
—sin=hp; 7 cos2 Lzsm2 sin=) Iy, >
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Then we have

- ik a 1 a
W(km+a)>,=——=cos=lp > +—(—sin — ik, cos - 2y kycos = )Ilpz
etz > g
1 a a ik, a
+ﬁ(—sin5 —ik,cos - > — kycos— )Il,b3 ECOSEWM >
- iky 1 .
and lp(—k,m+a)>,= lﬁcosgllpl > +\/—E(sm% + 1kzcos% — kycos g) Iy, >
+1( 2 4 ikycoss +k, )hp L |¢
sin5 + ik,cos 5 cos 3 4
V2h o2 \/_

These equations show that

Wk +a) > = —IP(-km+a) >,= e™P(-k 1 —a) >,

In the similar manner we have
Wk, m+a) >_= —lp(=k 7 — a) >_= e™lp(—k,m —a) >_
These equations show tha&t + a) and (— km— a) correspond to the same state
with additional phase ofr. This is just the case of the double valued reptesien of SO(3)
group homomorphic on to group SU(2). It may be teritas

PiE,a)=(2. b)

a
for statel(a,b) >, and

D%(F, a) = (1;1* _b *)

a

for statel(a,b) >_. Each of these matrices corresponds to a rotaﬁam) ) in a real space.
SinceR(Té, m+ a) and R(—ﬁ,n — a) are the same rotations, we have

p3(K,m + ) = —DV2(—k 7 — a)

showing that there is one-one correspondence bettyee two-Qubit MES and the double
valued representation of SO(3).Thus any MES of agenbasis can be evolved by a rotation
from an initial MES 1(1,0) >, and we may define a SO(3) sphere with diametgited by

vectorsak . Thus a new MES corresponds to a point in the3p&phere, an evolution of
MES corresponds to a trajectory connecting two tsoiand the initial statel(1,0) >, locates
at the centre of the SO(3) sphere.

Thus entanglement has been explored as one ofetheeksources required for quantum
computation, the functional dependence of the ghtament measures on spin correlation
functions has been established, correspondenceebetwvolution of MES of two-qubit
system and representation of SU(2) group has memked out in the new Eigen basis
(Rajput-Singh Eigen basis) [26-27].
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